Basolateral uptake of inorganic mercury in the kidney.
نویسنده
چکیده
Renal disposition of administered inorganic mercury was studied in rats that had undergone an acute bilateral ureteral ligation shortly before being injected with a nontoxic 0.5-micromol/kg iv dose of inorganic mercury with or without 2.0 micromol/kg glutathione (GSH) or cysteine. Ureteral ligation and induction of "stop-flow" conditions were carried out to decrease glomerular filtration rate to negligible levels prior to the administration of inorganic mercury. The disposition of mercury was studied in the kidneys, liver, and blood 1 h after treatment. In rats given only mercuric chloride, the renal burden of mercury was approximately 20-25% of the administered dose of mercury, which is approximately 50% of the renal burden of mercury detected on average in normal rats. Coadministration of inorganic mercury with GSH or cysteine caused a significant increase in the renal uptake of mercury 1 h after treatment. The enhanced uptake of mercury in the kidneys was due to increased uptake of mercury in the renal cortex and outer stripe of the outer medulla. Pretreatment with para-aminohippuric acid caused significant reductions in the renal concentration and burden of inorganic mercury in all the rats administered inorganic mercury, regardless of whether the inorganic mercury was coadministered with GSH or cysteine. Overall, the findings from the present study provide additional evidence that there is basolateral uptake of inorganic mercury in the kidneys and that the primary mechanism involved in this basolateral uptake is dependent on the activity of the organic anion transporter. More importantly, the present findings also show that GSH and cysteine enhance the basolateral uptake of mercuric ions in the kidney when they are coadministered with inorganic mercury (presumably in the form of mercuric conjugates). On the basis of the present findings, one is led to believe that mercuric conjugates of GSH and cysteine are taken up at the basolateral membrane following exposure to inorganic forms of mercury.
منابع مشابه
Renal organic anion transport system: a mechanism for the basolateral uptake of mercury-thiol conjugates along the pars recta of the proximal tubule.
The basolateral handling of 20 microM inorganic mercury (Hg(2+)), in the form of mercuric conjugates of cysteine (Cys), N-acetylcysteine (NAC), or glutathione (GSH), was studied in isolated perfused S2 segments of the rabbit proximal tubule. One of the primary aims of the present study was to determine in a direct manner whether basolateral uptake of Hg(++) occurs in the pars recta of the proxi...
متن کاملBinding of mercury in renal brush-border and basolateral membrane-vesicles.
The influence of the thiols L-cysteine (CYS), glutathione (GSH), and 2,3-dimercapto-1-propanesulfonate (DMPS) on the binding and transport of inorganic mercury (Hg2+) in luminal (brush-border) and basolateral membrane-vesicles isolated from the kidneys of rats was studied using radiolabeled mercury (203HgCl2). Membrane-vesicles were exposed to 1, 10, or 100 microM Hg2+ in the presence or absenc...
متن کاملRole of organic anion and amino acid carriers in transport of inorganic mercury in rat renal basolateral membrane vesicles: influence of compensatory renal growth.
Susceptibility to renal injury induced by inorganic mercury (Hg(2+)) increases significantly as a result of compensatory renal growth (following reductions of renal mass). We hypothesize that this phenomenon is related in part to increased basolateral uptake of Hg(2+) by proximal tubular cells. To determine the mechanistic roles of various transporters, we studied uptake of Hg(2+), in the form ...
متن کاملHuman organic anion transporter 1 mediates cellular uptake of cysteine-S conjugates of inorganic mercury.
BACKGROUND The epithelial cells lining the renal proximal tubule have been shown to be the primary cellular targets where mercuric ions gain entry, accumulate, and induce pathologic effects in vivo. Recent data have implicated at least one of the organic anion transport systems in the basolateral uptake of inorganic mercury (Hg(2+)). METHODS Using a line of Madin-Darby canine kidney (MDCK) II...
متن کاملSimultaneous coexposure to inorganic mercury and cadmium: a study of the renal and hepatic disposition of mercury and cadmium.
This study was designed to evaluate the effects of simultaneous coexposure to inorganic mercury and cadmium on the renal and hepatic disposition of each metal. Dispositional changes were assessed in rats 1 h and 24 h after the coexposure to relatively low doses of the metals (which individually are nonnephrotoxic in rats). The rational for studying mercury and cadmium is that both of these meta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicology and applied pharmacology
دوره 151 1 شماره
صفحات -
تاریخ انتشار 1998